(no subject)
Jun. 13th, 2007 11:02 pmЦелых несколько добрых людей вызывались помочь мне с проектом.
Профессор наш - парень хороший, но совершенно не понимает ни уровня нашей подготовленности, ни того простого факта, что он, вообще-то, должен быть доступен для консультаций. А он на конференции, всю неделю. На просьбу встретиться в прошедший понедельник сообщил, что вернется к концу недели и предложил встретиться "в следующий понедельник", то есть ...в день презентации проектов.
Здесь кончаю ныть и рассказываю про проект.
У меня есть официальные данные о зарплатах и количестве работников, по профессиям, по штатам, и по годам (1998-2006). Правда, упакованы они весьма неудобно: каждый год - отдельный огромный файл, в котором строк = кол-во профессий х кол-во штатов. Перепаковывать вручную долго получится, я не особый спец по Excel, хотя может, перегоню в базу данных, хотя бы в Access, и там сделаю select-ы.
Но проблема не в этом, а в том, что я не понимаю, что из этих данных можно сделать.
Меня интересует рынок программистского труда. Несколько разных профессий в их списке. Есть несколько гипотез из статей, которые я бы с удовольствием проверила. Например:
1. Концентрация компьютерных работ в разных штатах выравнивается - в захолустье становится больше, в магаполисах - меньше. Это видно, если просто смотреть на данные, а требование проекта регрессии какие-нибудь погонять.
2. По мере того, как дешевые IT-работники дешевеют (за счет outsourcing-a в менее дорогие штаты и Индию), спрос на дорогих - растет. Тут бы классно какой-нибудь production function изобразить, скажем, s/w продукт как функция количества работников подороже и количества работников подешевле. Ну и обнаружить, что когда дешевые дешевеют, допустим, вдвое, оптимальная точка сдвигается в такое место, где дешевого труда нужно условно в 1.3 раза больше, зато дорогого тоже нужно больше, чем раньше. И тогда, аутсорся в Индию support, мы повышаем спрос на крутых и высокооплачиваемых в Америке.
По большому счету, любая модель мне сгодится. Главное - прогнать хоть какую-нибудь регрессию и получить объяснимый результат. Но я совершенно не понимаю, что можно выжать из этих данных, которые еще сначала надо выковырять из разных файлов, так что хочется сначала четко понять, что и зачем, а уже потом выковыривать.
Можно по годам пытаться искать тенденцию - тогда надо что-то делать с time series, а в некоторые годы - два набора данных, за май и за ноябрь, непонятно, можно ли использовать ноябрьские данные, если они есть не за все годы. И вообще, лет-то всего семь, слабенькая для статистики выборка.
Или, наверное, можно пробовать искать зависимость количества работников от зарплаты. Или зарплаты от количества? Допустим, я это сделаю для двух профессий - высокооплачиваемой и низкооплачиваемой. Получу якобы две кривых спроса на труд. И? Тоже причем данные за разные годы, но это мелочи, главное - непонятно, что дальше с этими спросами на труд, кому они нужны.
В общем, я в полной растерянности, время идет, яснее не становится, спросить не у кого.
Профессор наш - парень хороший, но совершенно не понимает ни уровня нашей подготовленности, ни того простого факта, что он, вообще-то, должен быть доступен для консультаций. А он на конференции, всю неделю. На просьбу встретиться в прошедший понедельник сообщил, что вернется к концу недели и предложил встретиться "в следующий понедельник", то есть ...в день презентации проектов.
Здесь кончаю ныть и рассказываю про проект.
У меня есть официальные данные о зарплатах и количестве работников, по профессиям, по штатам, и по годам (1998-2006). Правда, упакованы они весьма неудобно: каждый год - отдельный огромный файл, в котором строк = кол-во профессий х кол-во штатов. Перепаковывать вручную долго получится, я не особый спец по Excel, хотя может, перегоню в базу данных, хотя бы в Access, и там сделаю select-ы.
Но проблема не в этом, а в том, что я не понимаю, что из этих данных можно сделать.
Меня интересует рынок программистского труда. Несколько разных профессий в их списке. Есть несколько гипотез из статей, которые я бы с удовольствием проверила. Например:
1. Концентрация компьютерных работ в разных штатах выравнивается - в захолустье становится больше, в магаполисах - меньше. Это видно, если просто смотреть на данные, а требование проекта регрессии какие-нибудь погонять.
2. По мере того, как дешевые IT-работники дешевеют (за счет outsourcing-a в менее дорогие штаты и Индию), спрос на дорогих - растет. Тут бы классно какой-нибудь production function изобразить, скажем, s/w продукт как функция количества работников подороже и количества работников подешевле. Ну и обнаружить, что когда дешевые дешевеют, допустим, вдвое, оптимальная точка сдвигается в такое место, где дешевого труда нужно условно в 1.3 раза больше, зато дорогого тоже нужно больше, чем раньше. И тогда, аутсорся в Индию support, мы повышаем спрос на крутых и высокооплачиваемых в Америке.
По большому счету, любая модель мне сгодится. Главное - прогнать хоть какую-нибудь регрессию и получить объяснимый результат. Но я совершенно не понимаю, что можно выжать из этих данных, которые еще сначала надо выковырять из разных файлов, так что хочется сначала четко понять, что и зачем, а уже потом выковыривать.
Можно по годам пытаться искать тенденцию - тогда надо что-то делать с time series, а в некоторые годы - два набора данных, за май и за ноябрь, непонятно, можно ли использовать ноябрьские данные, если они есть не за все годы. И вообще, лет-то всего семь, слабенькая для статистики выборка.
Или, наверное, можно пробовать искать зависимость количества работников от зарплаты. Или зарплаты от количества? Допустим, я это сделаю для двух профессий - высокооплачиваемой и низкооплачиваемой. Получу якобы две кривых спроса на труд. И? Тоже причем данные за разные годы, но это мелочи, главное - непонятно, что дальше с этими спросами на труд, кому они нужны.
В общем, я в полной растерянности, время идет, яснее не становится, спросить не у кого.
no subject
Date: 2007-06-14 06:07 pm (UTC)1. goda (1-9)This is a whinin subject factor
2. geographic location (you can combine it into three levels: east coast, west coast, midwest. then, you'll have only three groups to look at, and you don't expect idaho and ohio much differ from each other in terms of salaries, but California and East Coast, will probably differ. This is a between-subject factor).
3. position/profession. i don't know, how many you have, you can probably combine some of them together. it's a between subject factor.
so, this is your design.
now, analyses:
a) Data coding: in SPSS-each within subject factor, sp take column A, call it "year_one" and just list all the scores (salaries) there. same for years
2-9.
b). then, column 10, becomes your "geographic location column". in that column you inser "1" for all the salaries that are coming from east coast, "2" for west coast", "3" for midwest. you'll have a bunch of 1-2-3s in the same column.
c). then, column 11 becomes your "profession" column. "1" becomes marketing director, "2" becomes financial analyst. if you N is high, you can have lots of professsions, if your N is low, collaps across the similar ones (ones with similar set of skills/salaries) to increase your Ns in each cell.
d. Then go to you toolbar, select "analyse", select "repeated measures".
call you "repeated measure" factor "Years" or "TIme" or something, then say that it has 9 levels. In the next window drag your variables for years 1-9 into the "within subject" box. then drag your two between subject factors (location and position) into your "Between subject factors" box.
also ask for Descriptives.
this way, you'll see whether TIme, Geography, Positisions (or their interactions) have any effect on salaries. If something doesn't have an effect, you can forget about it (collaps across this factor) for future analyses, if something has an effect, you are going to look at it closer in your future analyses. that's about all :)
no subject
Date: 2007-06-14 06:13 pm (UTC)